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Abstract: An energy derivative analysis method for closed-shell self-consistent field (SCF) wave functions has been
applied to the newly (theoretically and/or experimentally) discovered cis monobridged compounds Al,H,, Si;Ha,
Ga;H;, and Ge;H,. Monobridged stationary points for the B,H, and C;H; molecules were also considered for
comparative purposes. At the stationary points, the first and second derivatives of the orbital, electronic, nuclear,
and total energies for SCF wave functions were transformed from the Cartesian to the normal coordinate and to the
mass-weighted normal coordinate systems. The energy derivative quantities in terms of the molecular vibrations
provide crucial information concerning the structural stability of the monobridged dihydrides of group IIIA and

group IVA atoms.

1. Introduction

The global minimum of the ground state of the SiH;
molecule has been found to be a C,, symmetry dibridged
(butterfly) form.!=® This remarkable structure was first pre-
dicted via a theoretical study by Lischka and Kéhler in 1983!
and independently by Binkley? a few weeks later. Several years
later, a spectroscopic group in France indeed observed this
butterfly structure in the laboratory using millimeter- and
submillimeter-wave techniques.!® Further theoretical surveys
of the Si;H; potential energy hypersurfaces in our research group
led to another exciting discovery in 1990: the existence of a
cis monobridged structure of the Si;H, molecule.®!! After
successfully identifying the butterfly structure, the same French
group undertook the challenge to synthesize and identify other
silicon containing species. In 1992, they reported!? the spec-
troscopic observation of this extraordinary monobridged isomer.
Here we see a fruitful combined effort of experimental and
theoretical work. Remarkable advances in technology and
methodology in both experimental measurements and theoretical
predictions are without doubt a key point to these successes.
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Theoretical consideration has been directed!3~!8 subsequently
at the potential energy hypersurfaces of other MyH,-type
molecules, where M denotes a heavy atom of group IIIA or
IVA. In these dihydrides, four types of equilibrium structures
have been located on the ground state closed-shell singlet
surfaces: (1) dibridged structures [nonplanar (C,, symmetry)
for Si;H, and GeH,, planar (Dy;, symmetry) for ALH, and
GazHzl: (2) trans planar (Ca, symmetry) for all four M;H>
molecules; (3) cis monobridged (C; symmetry) for all four M;H,
molecules; and (4) vinylidene-like structures (C,, symmetry)
for all four M;H; molecules. Grev and Schaefer!! explained
the formation of the first three types of compounds as arising
from donation of electron density from electron-rich regions
(the H atom or the M atom lone pair) to the electron-deficient
empty p orbital of an M atom.

Quite recently Chertihin and Andrews have reported!® matrix-
isolated infrared (IR) spectra of AIH, (» = 1, 2, and 3) and
AL H, species via reactions of pulsed-laser ablated Al atoms
with the H, molecule. Their detection of planar dibridged
(cyclic), cis monobridged (asymmetric), and trans (symmetric)
ALH, structures is of special interest. They report observation
of two absorptions at 1161 (B3,) and 844 cm™! (By,) for the
planar dibridged (cyclic) structure, three absorptions at 1669
(@), 1127 (@), and 890 cm™! (a") for the cis monobridged
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(asymmetric) structure, and a single absorption at 1647 cm™!
(By) for the trans (symmetric) structure. These vibrational
frequency assignments were based upon theoretical predictions
of the IR intensities; the observed absorptions correspond to
IR active modes with the largest intensities.1®

In a related experimental study Xiao, Hauge, and Margrave
have investigated?® the reactions of gallium with molecular
hydrogen and methane via FT-IR matrix isolation spectroscopy.
These workers report the observation of two distinct isomers
of Ga;H,. They give the Ga—H stretching frequency as 1022
cm™! (in Kr matrix) and 1002 cm™! (in Ar matrix) for Gay(b-
H), with two bridging hydrogens and 1686 cm™! (in Ar matrix)
for Gay(t-H), with two terminal hydrogens. The Ga—H stretch-
ing frequency for the former isomer is consistent with our
theoretically predicted!* values of 1143 cm™! (DZP CISD) and
1139 cm~! (DZP CCSD) for the planar dibridged isomer, and
the IR intensity of this B3, mode is determined to be extraor-
dinarily strong. The possibility that the second isomer of Ga,H;
might be the monobridged structure was not considered.

In recent studies?!~2* we have reported an extension of the
Mulliken—Walsh (M-W)?425 diagrams (or rules) to the multi-
dimensional normal coordinate system. Many successful ap-
plications of the M-W method to various chemical behaviors
simply depend on the fact that responses of the orbital energies
are proportional to or equal to responses of the total energy
with respect to a certain internal coordinate (in our case normal
coordinate). This means that the responses of the one-electron
energy and nuclear energy with respect to that coordinate are
roughly cancelled out. It has been shown that the first and
second derivatives of the orbital, electronic, nuclear, and total
self-consistent field (SCF) energies in terms of normal coordi-
nates provide useful information concerning the structures and
reactivities of the various molecular systems. This information
appears in a mathematically rigorous manner, although it is
usually consistent with qualitative bonding models. For each
normal coordinate, the orbital energies of certain molecular
orbitals (MOs) respond quite sensitively. Those MOs are
designated as the vibrationally active molecular orbitals (va-
MOs). Specifically, the vibrationally active highest occupied
and the lowest unoccupied MOs are termed va-HOMO and va-
LUMO, respectively.

In our previous energy derivative analysis studies,?!~23 the
normal coordinate system has been predominantly employed
to determine the responses of energetic quantities with respect
to the molecular vibrations. Namely, the energy derivatives in
terms of the Cartesian coordinate (X) system have been
transformed into the normal coordinate (Q) systems via the Ly
matrix, where the L, matrix connects the two coordinate systems
through X = LxQ. In the current study, the Ly, matrix which
relates the mass-weighted Cartesian coordinate (Xi) and the
normal coordinate (Q) systems, X, = LxmQ, is also utilized to
transform the first- and second-order changes in energetic
quantities. The mass-weighted Cartesian coordinate is widely
used to pursue the intrinsic reaction coordinate (IRC) originally
proposed by Fukui?® The IRC, often referred to as the
minimum energy path, is the steepest descent path in the mass-
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weighted Cartesian coordinate system. This coordinate system
is also employed in the reaction path Hamiltonian of Miller,
Handy, and Adams.”” There has been extensive development
of methods which depend on the availability of analytic higher
derivatives of ab initio wave functions to determine IRCs. For
example, readers may refer to the recent paper by Page,
Doubleday, and Mclver.28

In the present research, we examine the stability of the
monobridged structures of six M;H, molecules, namely B,H;,
CH,, ALLH,, Si;H,, Ga;H;, and Ge;H3, using first and second
energy derivative analysis methods. Although the BH; and
C,H; potential energy surfaces do not possess planar, mono-
bridged-like equilibrium structures, the analogous stationary
points of Hessian index two and one, respectively, are included
for comparative purposes. Since the possibility of a mono-
bridged MyH; equilibrium structure had never been proposed
prior to Colegrove’s 1990 paper,® the investigation of the
bonding in these systems by the energy derivative is of interest.

2. Theoretical Background

The canonical orbital energies may be commonly determined
by diagonalizing the Fock matrix in the MO basis

d.o.

€= F,=hy+ > {2(ilkk) — (ik|ik)} (1
k

and they may be related to the ionization potential via
Koopmans’ theorem.? In the equation h;; and (ij|kf) are standard
one- and two-electron integrals in the MO basis and d.o. denotes
doubly occupied orbitals. Using the orbital energies, the
electronic energy of a closed-shell SCF wave function may be
written as

d.o.

Eelec = 2 (hii + Ei) (2)

and the total SCF energy as

ESCF = Lejec + Enuc (3)

Energy derivative quantities (for example, the SCF energy)

may be transformed from the Cartesian to the normal coordinate
system as follows:

first derivative

aESC]-"' — aESCF . (4)
Q  oX

and second derivative

azESCF
aQ’
For normal coordinates involving small vibrational amplitudes

and/or low frequencies, it is found to be advantageous to use
the following mass-weighted energy derivative quantities:

2

ax?

=L, . (5)
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first derivative

129Escr — Escr,
X X Txm

(6)

and second derivative

azESCF_I: 82ESCF
an — Hxm 9x?

where M is the atomic mass matrix.

The energy derivative quantities defined in eqs 4—7 will be
employed in order to discuss the structures of the six planar
monobridged molecules. In our earlier studies, 21?2 the first
derivatives of the canonical orbital energies were determined
via analytic derivative techniques. In the present study, the first
and second derivatives of energetic quantities (for example, the
ith orbital energy) were obtained via the finite difference method.

M

L 7

3. Theoretical Procedures

The first and second derivatives of the energy quantities have
been determined for the six planar monobridged structures using
the triple-¢ plus double polarization (TZ2P) basis set. The
triple-{ (TZ) part of the basis set is Dunning’s triple-§
contraction® of Huzinaga’s primitive Gaussian sets?! for B, C,
and H. For Al and Si, McLean and Chandler’s*? contractions
of Huzinaga’s 12s9p primitive Gaussian sets®* were used. The
Ga and Ge TZ basis sets are derived from Dunning’s 14s11p5d
primitive Gaussian basis sets** by loosely contracting to
10s8p2d. The TZ basis set is therefore described as B and C
(10s6p/5s3p), Al and Si (12s9p/6s5p)., Ga and Ge (14s11p5d/
10s8p2d), and H (5s/3s). The TZ2P basis set was constructed
by augmenting the TZ basis with two sets of d-like functions
on heavy atoms with orbital exponents a4(B) = 1.40, 0.350;
a4(C) = 1.50, 0.375; a{Al) = 0.80, 0.20; a4(Si) = 1.00, 0.25;
a4(Ga) = 0.216, 0.068; and a«Ge) = 0.270, 0.088; and two
sets of p functions on hydrogen with orbital exponents o,(H)
= 1.50 and 0.375.

Analytic SCF gradient techniques? in conjunction with the
Newton—Raphson method were used to locate the stationary
point structures for all systems studied. The optimized mo-
lecular species were unambiguously characterized using analytic
SCF second derivative techniques.® The PSI-2 program
package’” has been used in all computational procedures.

4. Results and Discussion

The predicted physical properties of the six planar cis
monobridged dihydrides, M;H;, at the TZ2P SCF level of theory
are presented in Table 1. Although the planar monobridged
B:H; and C;H; molecules are not equilibrium structures, as
mentioned above in the Introduction, they are included for
comparative purposes.
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The Monobridged B,H, Structure: Stationary Point (Hes-
sian Index 2). The predicted geometry at the TZ2P SCF level
of theory is depicted in Figure 1. The planar monobridged-
like structure for the B,H; molecule is a stationary point with
two imaginary vibrational frequencies (Hessian index 2).
Following the eigenvector of the 340i cm™! out-of-plane bending
imaginary frequency leads to the true transition state (Hessian
index 1) for the 1,2 hydrogen shift isomerization reaction!®

HB=BH — :B-BH, ®)

The difference between the two BH* distances is 0.412 A (1.727
— 1.315), where H* indicates the bridged (migrating) hydrogen
atom. Based on an analysis of the SCF eigenvectors, there
seems to be no distinct &t bonding between the two B atoms.

The energy derivative quantities in terms of the mass-
weighted normal and regular normal coordinates, as well as the
valence canonical orbital energies, are presented in Table 2. It
should be noted that the first derivatives of the energetic
quantities with respect to nontotally symmetric normal coordi-
nates vanish due to the total symmetric nature of the energies.
The responses for the virtual (unoccupied) orbital energies are
omitted from the table because the virtual orbitals at the SCF
level of theory are not physically well-defined and they are
known to be often too sensitive to the quality of the basis
set 21,3839

With respect to the BH stretching (Q;) mode, the energy of
the 4a’ orbital significantly increases. Thus the 4a” MO is related
to the BH bonding orbital, and it is the first-order va-MO. In
terms of the BH* stretching (Qy) vibration, the 3a’ orbital energy
has a positive slope. For the BB stretching (Q3) motion, the
3a” and 5a’ orbital energies show positive gradients. From
combined analyses based on the SCF eigenvectors and energy
derivatives, the 3a” and 5a° MOs may be related to the BB
bonding and the BH* bonding orbitals. With the two bending
(Qs4 and Qs) modes, the first-order responses of the orbital
energies are relatively small. For all the in-plane vibrations,
the 6a’ orbital energy is insensitive. Therefore, the 62" MO may
be assigned to the lone pair orbital located mainly on the B
atom proximate to the H* atom.

When the BH stretching (Q;) mode is activated, the 3a’ orbital
energy shows a negative curvature (second derivative) with a
large magnitude, indicating the unstable nature*® along this
stretching coordinate. On the contrary, the curvature of the 4a’
orbital energy is positive, implying the stable (favorable) nature*
of the BH bond. With respect to the BH* stretching (Q2) mode,
the 3a’ orbital energy shows a negative second derivative and
the 5a’ orbital energy has a positive curvature. Thus the 5a’
MO accommodates the migrating H* atom. Upon BB bond
elongation (Qs), the orbital energies of the 3a’, 52’, and 6a’ MOs
have negative curvatures, while the 4a’ orbital energy has a
positive second derivative. For this BB stretching motion the
responses of the orbital energies are more evident with respect
to the mass-weighted normal coordinate than the regular normal
coordinate, since the elements of the Ly, matrix have larger
absolute values for the heavy atom. For the three stretching
(Q1—Q3) vibrations, the second derivatives of the electronic
energy are negative and those of the nuclear energy are positive.
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Table 1.
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Theoretical Predictions of the Dipole Moment (x), Harmonic Vibrational Frequencies (@), and Infrared Intensities (I) of the Six

Planar Monobridged M,;H; Molecules Using the TZ2P SCF Level of Theory

M:H; B:;H, C;H; AlH, Si;H; GayH, Ge;H;
u (D) 4.716 3.340 0.181 1.344 0.488 0.817
w, (a”) MH stretch (cm™") 2841 3544 1898 2340 1846 2211
s (a’) MH* stretch 2080 2714 1222 1715 1177 1603
@ (a”) MM stretch 1002 1973 232 666 124 333
w4 (a”) MMH bend 810 1019 429 426 397 422
ws (a") MMH* bend 1091 10114 974 1020 798 890
s (a”) oop bend 340i 621 265 86 273 128i
I; (km'mol™') 55.0 56.8 651.5 68.5 915.2 120.1
I 65.2 31.9 450.1 89.8 524.2 129.7
I 27 7.7 395 40.3 9.0 9.1
Is 26.8 21.0 414 13.3 48.6 23.1
Is - 7185 130.2 738.6 104.1
Is - 92.6 395 52.7 18.9 -
Table 2. The SCF Energy Derivative Quantities for the Planar Monobridged B,H; Stationary Point Using the TZ2P Basis Set*~*
first derivative second derivative
normal coord freq Q2841 Q,2080 Q31002 Q4810 Qs1091i Q;2841 Q,2080 Q;1002 Qs810 Q<1091 Qs 340i
mass-weighted normal coord
6a’ (—0.294) -0.012 -0.015 -0.046 -0.036 -0.056 —0.032 -0.017 -0.261 0.042 ~-0.099 -—0.285
5a’ (—0.421) —0.068 0.028 0.230 0.017 0.059 —0.043 0.175 —0.106 —0.073 ~0.293 0.091
4a’ (—0.648) 0.305 0.063 -0.101 0.019 0.023 0.258 —0.062 0.548 0.516 0.299 0.729
3a’ (—0.777) -0.017 0.133 0.198 —0.043 —0070 —0641 —0435 -—0385 -0.018 0.114 0.214
normal coordinate
6a’ (—0.294) —-0.013 -0011 —-0017 -0.020 -0.040 -—0.023 -0.013 -0.020 0.000 -~-0.068 —0.118
Sa’ (—0.421) -0.029 0.023 0.070 0.022 0.035 -0.017 0.148 —0.011 -0.013 ~0.185 0.022
4a’ (—0.648) 0.250 0.054 0.009 —0.003 0.006 0.099 —0.049 0.037 0.254 0.206 0.357
3a’ (—0.777) 0.018 0.120 0071 -0.005 -0.075 -0.349 -0356 —0.010 0.013 0.058 0.083
PEBQ" 1.693 1.996 2517 —0386 -—0077 -—2423 -—1460 —0.896 1.588 0.258 1.780
B E ol 30" 0.119 0.118 0.034 0.014 -0.120 -0316 —0.325 0.030 0.162 0.038 0.075
O Eeiec 00" 1.813 2.114 2551 -0372 -0.197 -2739 -1785 —0.866 1.750 0.295 1.855
P E /30" —1.813 2114 -2.551 0.372 0.197 3.830 2.370 1.001 -1.661 0456 —1.871
P Ec 90" 0.000 0.000 0.000 0.000 0.000 1.091 0.585 0.136 0.089 -~-0.161 -0.016

@ With respect to the mass-weighted normal coordinates, first derivatives are in hartree A~! and second derivatives in hartree A~2, * With respect

to the normal coordinates, first derivatives are in hartree

~! amu~"? and second derivatives in hartree

A2 amu™'. < Q; = MH stretch (a); Q; =

MH* stretch (MH* symmetric stretch) (a’); Q3 = MM stretch (a"); Qs = MMH bend (H*MH bend) (a"); Qs = MMH* bend (MH* asymmetric
stretch) (a”); and Qg = out-of-plane bend (a”). ¢ Signs of the normal coordinates are chosen to be positive for increasing bond lengths and bond
angles. For the MMH* bending mode, the motion toward the vinylidene-like structure is chosen to be positive. < The energy first derivatives with
respect to non-totally symmetric modes vanish due to the totally symmetric nature of the energy. / Vibrational frequencies are in cm™'. # E;, stands
for half of the one-electron energy, E.s for the total orbital energy, Ee. for the electronic energy, Eq. for the nuclear energy, and E, for the SCF

energy.

Figure 1. The optimized geometry for the monobridged B;H; (Hessian
index 2) stationary point at the TZ2P SCF level of theory. Bond lengths
are in A and bond angles are in deg.

With respect to the BBH bending (Qs) normal coordinate,
the 4a’ orbital energy has a positive curvature. This 4a” MO is
assigned to the BH bonding orbital as mentioned above. For
the H* migration (Qs) mode, the four valence orbital energies
have second derivatives with relatively large magnitudes. Thus,
all the valence orbitals are second-order va-MOs. The orbital
energies of the 5a” and 6a” MOs have negative curvatures. These
negative curvatures are the driving forces for the reaction to
proceed to either minimum (reactant or product) in eq 8. Since
the 52" MO is related to the bonding of the bridged hydrogen
to the B atoms, the structural instability of monobridged-like
B;H> may be mainly attributed to the unstable nature* of this
orbital along the BBH* bending (Qs) motion. In terms of the

out-of-plane bending (Qs) mode, the 3a’, 42, and 5a° orbital
energies have positive second derivatives, while the energy of
the 6a” MO has negative curvature. This negative curvature is
a driving force to lead the system to the true isomerization
transition state in C; symmetry. The existence of a low-lying
LUMO (1a”) appears to be responsible for the C, symmetry
transition state. The 6a” MO is the second-order va-HOMO
for the Qg vibration, and it coincides with the conventional
HOMO.

The energy of the 6a” MO, which is approximately described
as the lone pair orbital on the B atom proximate to H*, has
negative curvatures with somewhat large magnitudes for the
Qs, Qs, and Qg modes. The 6a” MO, therefore, destabilizes the
stationary point structure along the BB stretching, BBH*
bending, and out-of-plane bending motions. For the three
bending (Qs—Qs) motions, the electronic energy contributions
to the SCF force constants are positive, while the nuclear energy
contributions are negative. Since the second derivatives of the
total orbital energy and electronic energy are positive, the three
bending processes are seen to be electronically stable processes.

The Monobridged C;H; Structure: Transition State (Hes-
sian Index 1). The SCF predicted geometry for planar
monobridged-like C2H; is illustrated in Figure 2. This is the
transition state structure (Hessian index 1) for the isomerization
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Table 3. The SCF Energy Derivative Quantities for the Planar Monobridged C;H; Transition State Using the TZ2P Basis Set*

first derivative

second derivative

normal coord freq Q3544 Q2714 Q:1973 Q41019 Qs1011i Q3544 Q.2714 Q21973 Q41019 Qs1011i Q4621
mass-weighted normal coord
1a” (—0.435) —0.082 0.016 0293 —0.007 —0013 —0.121 —0.056 —0.685 0.112 0.142 0.374
6a’ (—0.440) 0.048 0.007 -0.120 -0.046 —0.074 —0.001 0.004 —0.156 0.040 -0.014 —0.469
Sa’ (—0.570) —0.075 0.133 0.317 0.067 0.080 —0.070 0245 -0.302 0.000 -0.484 0.066
4a’ (—0.783) 0.519 0.067 —0.229 0.006 0046 —0.404 —0.192 0.496 0.859 0.263 0.897
3a’ (—1.105) —0.109 0.167 0421 -0021 -0.079 -0204 -—0.533 0.132 0.124 0.225 0.051
normal coordinate
l1a” (—0.435) —0.016 0.021 0.088 0.002 -0.019 -0.030 =0.050 -0.057 0.020 0.061 0.118
6a’ (—0.440) 0.023 0.007 —0.031 -0.020 -0.050 —0.003 0.001 —0.004 0.015 -0.002 -0.160
5a" (—0.570) =0.011 0.121 0.097 0.036 0.037  —0.000 0200 —0.032 0.029 -0.226 0.003
4a’ (—0.783) 0.399 0.049 0.014 —0.001 0015 —0.324 —0.147 0.024 0.443 0.150 0.458
3a’ (—1.105) -0.014 0.160 0.134 0006 —0.082 —0.102 —0.440 0.020 0.017 0.110  —0.008
FEWIQ" 1.578 2.870 5.939 0.064 —0261 —4365 -—3.000 -—2.822 2.864 0.717 2.964
FEo/IQ" 0.370 0.332 0.063 0029 =0.147 —0.402 -0.441 0.025 0.445 0.123 0.324
B Ecied 30" 1.948 3.202 6.002 0094 —0408 —4.768 —3441 -2.797 3.308 0.840 3.288
B E /30" —1.948 —3.202 -6.002 -—0.094 0.408 6.466 4.436 3324 -3.168 -0978 —3.236
FE 00" 0.000 0.000 0.000 0.000 0.000 1.698 0.995 0.526 0.140  -0.138 0.052

@ See footnotes a—g in Table 2.

Figure 2. The optimized geometry for the monobridged C;H: (Hessian
index 1) stationary point at the TZ2P SCF level of theory. Bond lengths
are in A and bond angles are in deg.

(1,2 hydrogen shift) reaction
HC=CH — :C=CH, 9

The difference between the two CH* distances is 0.278 A (1.452
— 1.174), where H* again denotes the bridged (migrating)
hydrogen atom. The CC bond shows character intermediate
between double and triple bonds. Readers may refer to refs
41—43 for more accurate ab initio results for the acetylene—
vinylidene system. A detailed energy derivative analysis of this
system has also been given elsewhere.?? The derivatives of the
energetic quantities and canonical orbital energies are presented
in Table 3. It should be noted that the valence orbital energies
are significantly lower for the C;H; system than for the B,H,
system. This feature may be attributed to the larger electroneg-
ativity* of the C atom (2.5) relative to that of the B atom (2.0).

With respect to the reaction coordinate (Qs), which is
approximately described as the CCH* bending mode, the orbital
energy of the 5" MO shows a negative curvature. This negative
curvature is a driving force for the reaction to proceed to either
minimum (reactant or product) in eq 9. The 5a” MO describes
the BH* and BB bonds in the B;H» system (Table 2) and the
CH* and CC bonds in the C;H; system (Table 3), respectively.
In these two cases, the BH* and CH* bonds are not in the
triangular bridged form. The in-plane 7-like bonding is more
distinct for C,H, than B,H;. The structural instability of
monobridged-like C;H, may also be attributed to the unstable

(41) Osamura, Y.; Schaefer, H. F.; Gray, S. K.; Miller, W. H. J. Am.
Chem. Soc. 1981, 103, 1904.

(42) Carrington, T.; Hubbard, L. M.; Schaefer, H. F.; Miller, W. H. J.
Chem. Phys. 1984, 80, 4347.

(43) Gallo, M. M.; Hamilton, T. P.; Schaefer, H. F. J. Am. Chem. Soc.
1990, /72, 8714.

Figure 3. The optimized geometry for monobridged Al,H; at the TZ2P
SCF level of theory. Bond lengths are in A and bond angles are in
deg.

nature of the 5a’ orbital energy along the Qs bending coordinate.
The magnitude of the negative curvature of the 5a’ orbital energy
with respect to Qs is larger for C;H; than for B,H..

For the out-of-plane bending (Qs, 621 cm™!) mode, the 4a’
and l1a” orbital energies show large positive curvatures, while
the energy of the 6a” MO has a negative second derivative. The
magnitude of the negative curvature of the 6a’ orbital energy is
again larger for C,H; than for B;H,. The energy of the 1a”
MO, which was unoccupied in the preceding case (B;H,), has
negative curvatures for the three stretching (Q,—Q3) motions
and positive curvatures for the three bending (Q4—Qs) vibra-
tions. Thus, the 1a” MO destabilizes the transition state
structure along the stretching motions and stabilizes the system
along the bending motions. As a result, the SCF force constant
of the out-of-plane bending (Qs) vibration is positive for C;Ha,
in contrast to the negative Qs force constant for the B,H; system.
Because the second derivatives of the total orbital energy and
electronic energy for the reaction coordinate are positive, this
isomerization reaction is an electronically stable process.??

The Monobridged AlH; Structure: Equilibrium. The
predicted geometry at the TZ2P SCF level of theory is shown
in Figure 3. The difference between the two AIH* distances is
only 0.033 A (1.867 — 1.834), where H* indicates the bridged
hydrogen atom. Note that in this case the bridged H* atom is
slightly closer to the M atom bonded to the terminal H atom.
This monobridged structure is a minimum, unlike the cases of
B:H; and C-Hs. The Al—Al bond has single bond character.
The energy derivative quantities and valence orbital energies
are listed in Table 4. It may be seen that the four valence
orbitals of the Al,H; system are higher in energy than those of
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Table 4. The SCF Energy Derivative Quantities for Planar Monobridged ALH, Using the TZ2P Basis Set*

first derivative second derivative
normal coord freq Q1898 Q21222 Q3232 Q4429 Qs974 Qi1898 Q,1222 Q3232 Q4429 Q5974 Q6265
mass-weighted normal coord
12a’ (—0.266) —0.030 —0.025 0.002 0.041 0.028 0.011 0.017 0.134 0.178 0.017 -0.001
11a’ (—0.325) —0.028 —0.008 0.037 —0.014 -—0.069 —0.027 0.057 —0.253 -—-0.208 -—0.051 -—0.030
10a’ (—0.470) 0.165 0.051 —0.023 —0.031 0.067 0.063 0.024 0.126 0.085 0.034 0.099
9a’ (—0.590) 0.005 0.152 0.113 0.094 -—0.011 -0.199 -—0.192 -0.102 -0.078 0.020 0.044
normal coordinate
12a’ (—0.266) —0.023 —0.020 -—0.008 0.018 0.024 0.005 0.019 —0.003 0.008 0.004 —0.002
11a’ (—0.325) —0.022 —0.009 0014 -0.014 -—0.062 —0.017 0039 —-0.011 -0.023 -0.032 -0.018
10a” (—0.470) 0.141 0.041 0.005 —0.004 0.060 0.047 0.021 0.026 0.057 0.039 0.064
9a’ (—0.590) 0.013 0.131 0.006 0.033 -0.017 -—0.147 -0.152 0.001 -—0.004 0.022 0.040
Ep/o0" 3.016 2.892 2.865 2509 —0434 -—-2894 —0.286 0.114 0.833 —1.477 2.127
FPEo/30" —0.292 0.059 —0.024 -0.020 -0.016 -—-0.252 —0.386 —0.018 —0.109 0411 -0.175
"E1eo/ 00 2.724 2.951 2.841 2489 —0451 -—3.147 —0.671 0.096 0.724 —1.066 1.952
0"Epy/ 90" —2.724 —2951 —2841 —2.489 0.451 3.634 0.873 —0.088 —0.699 1.194 —1.942
PEi/ 90" 0.000 0.000 0.000 0.000 0.000 0.487 0.202 0.007 0.025 0.128 0.009
@ See footnotes a—g in Table 2.
Table 5. The SCF Energy Derivative Quantities for Planar Monobridged Si;H, Using the TZ2P Basis Set?
first derivative second derivative
normal coord freq Q12340 Q1715 Q3666 Q4426 Q51020 Q12340 Q1715 Q3666 Q4426 Q1020 Q486
mass-weighted normal coord
3a” (—0.283) —0.029 0.007 0.136 —-0.017 -0.010 -—0.028 —0.030 -0212 -0.004 —0.007 -—0.025
12a’ (—0.360) —0.002 -—0.029 -—-0.012 0.035 0.006 0.038 0.039 0.684 —0.005 -0.059 —0.024
11a’ (—0.440) —0.027 0.071 0.069 —0.066 —0.065 —0.030 0.096 —0.748 —0.086 0.075 —0.021
10a’ (—0.595) 0.228 0.018 —0.104 0.019 0.080 —0.006 —0.006 0.130 0211 -—0.001 0.254
9a’ (—0.776) 0.003 0.149 0.196 —0.016 0.012 —0.228 -0299 -—0.301 0.020 0.040 0.039
normal coordinate
3a” (—0.283) —0.013 0.003 0.025 —0.000 0.000 -0.017 -0.026 -0.007 -0.006 —0.004 —0.017
12a’ (—0.360) —0.004 —0.023 0.000 0.019 0.005 0.023 0.033 0.032 0.003 —0.045 -0.010
11a’ (—0.440) —0.013 0.059 0004 —0.029 -—-0.054 -—0.012 0.083 —0.035 —0.029 0.055 -—0.013
10a’ (—0.595) 0.192 0.017 0.005 0.002 0054 —0.018 —0.010 0.001 0.116 0.013 0.153
9a’ (—0.776) 0.021 0.132 0.041 0.017 0.018 —0.156 —0.246 —0.006 0.009 0.032 0.023
P EW/IQ" 3.273 4358 6974 —0541 —-0.136 —4.215 -2.131 -1.535 1.994 —0.079 2.602
P Eon/0Q" —0.133 0.027 -—0.143 0.054 0.032 -0.222 -—-0.334 0.000 —0.020 0.289 —0.001
P Ee1e/ 00" 3.140 4.385 6.831 —0486 —0.104 —4437 -—2465 -—1.535 1.974 0.210 2.601
PEnSIO" —3.140 —4.385 —6.831 0.486 0.104 5177 2.862 1.595 —1.949 —0.069 —2.600
PE/00" 0.000 0.000 0.000 0.000 0.000 0.740 0.397 0.060 0.025 0.141 0.001

@ See footnotes a—g in Table 2.

B:H; (see Table 2) and C,H; (see Table 3) systems, reflecting
the smaller electronegativity (1.5)* of the Al atom,

With respect to the AIH stretching (Q;) mode, the energy of
the 10a’ orbital increases. Thus the 10a’ MO is assigned to the
AlH bonding orbital. In terms of the AIH* symmetric stretching
(Q2) and Al—Al stretching (Q3;) modes, the energy of the 92’
orbital has positive slopes. From SCF eigenvector and orbital
energy derivative analyses, the 92’ MO may be related to the
Al—H*—Alring (bridged) bonds. The energies of the 11a’ and
12a’ MOs are relatively insensitive in first order to all in-plane
vibrational motions. These orbitals are related to the lone-pair-
like orbitals on each Al atom, respectively.

For the AlH stretching (Q1) and AIH* stretching (Q2) normal
coordinates, the 9a’ orbital energy shows negative curvatures,
indicating an unstable nature along the two stretching motions.
When the AlAl stretching (Qs) is activated, all the valence orbital
energies respond quite sensitively (in the mass-weighted coor-
dinates). The energies of the 9a’ and 11a’” MOs display
“instability”, while those of the 10a” and 11a” MOs are “stable”
with respect to the Q3 coordinate. For the AIH* asymmetric
stretching (Qs) mode, the responses of the orbital energies are
somewhat insensitive. Specifically it should be noted that the
normal coordinate curvature of the 11a’ orbital energy (—0.032)
has a significantly smaller magnitude compared to the cor-

(44) Pauling, L. Nature of the Chemical Bond, 3rd ed.; Cornell University
Press: Ithaca, NY, 1960.

responding values of the 5a” orbital energies for B,H, (—0.185)
and C;H; (—0.226).

When the AIAIH bending (Qq, 429 cm™!) motion is activated,
the energy of the 11a° MO has a negative curvature and the
12a’ orbital energy shows a positive second derivative. Thus,
this Q4 mode may be related to the reorganization of the lone-
pair-like orbitals on the two Al atoms. In the BH; and C;H;
systems, the MMH bending (Qs in Tables 2 and 3) modes were
related more closely to the MH bonding orbitals (4a’) than to
the lone-pair orbitals. For the out-of-plane bending (Qg)
vibration, all the valence orbital energies have second derivatives
with small magnitudes. This feature also differs from the
preceding two cases; the curvatures of the 6a’ orbital energy
were negative with considerable magnitudes in Tables 2 and 3.

The Monobridged Si;H; Structure: Equilibrium. The
TZ2P optimized geometry at the SCF level of theory is
illustrated in Figure 4. The monobridged structure of the Si;H;
molecule is also a minimum at the TZ2P SCF and correlated
levels of theory.®!! The difference between the SiH* distances
is 0.141 A (1.759 — 1.618) at the TZ2P SCF level of theory,
where H* again denotes the bridged H atom. There is &
bonding between the two Si atoms.

The energy derivative quantities and the canonical orbital
energies are listed in Table 5. The electronegativity of the Si
atom is 1.8,* which lies between the corresponding values of
the C (2.5) and Al (1.5) atoms. Consequently, the valence
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Figure 4. The optimized geometry for monobridged Si;H; at the TZ2P
SCF level of theory. Bond lengths are in A and bond angles are in
deg. Experimental values are from ref 12.

orbital energies for the Si;H; species are higher than those for
the C,H; system but lower than those for the Al;H; system.
For the SiH stretching (Q;) mode, the energy of the 10a’ orbital
increases. Thus the 10a” MO is assigned to the SiH bonding
orbital. In terms of the SiH* symmetric stretching (Q;) mode,
the energies of the 9a” and 11a” MOs have positive slopes. For
the SiSi stretching (Q3) mode, the 9a’, 11a’, and 3a” orbital
energies show positive gradients. From combined analyses of
the SCF eigenvectors and orbital energy derivatives, the 9a" and
11a” MOs may be related to the triangular Si—H*—Si bridged
bonds and the 3a” MO to the SiSi & bonding orbital. The 11a’
MOs for the Al;H; and Si;H, systems have less distinct in-
plane s-like overlap compared to the corresponding 5a” MOs
of the first two molecules.

When the SiH stretching (Q;) mode is activated, the 9a” orbital
energy shows a negative curvature, indicating unstable nature.
For the SiH* symmetric stretching (Q2) normal coordinate, the
energy of the 9a” MO has a negative second derivative and the
11a” orbital energy displays positive curvature. In terms of the
SiSi stretching (Q3) mode, all the valence MOs have second
derivatives with large magnitudes (in mass-weighted coordi-
nates). The stretching motions are electronically unstable
processes, since the second derivatives of the electronic energy
are negative.

For the SiSiH bending (Q4, 426 cm™') mode, the 10a” orbital
energy shows a stable nature. This feature is similar to that of
the Q4 mode for the C;H; system (see Table 3). With respect
to SiH* asymmetric stretching (or SiSiH* bending) Qs, the 112’
orbital energy has a positive curvature, in contrast to negative
curvatures for the corresponding 5a’ orbital energies of the BoH
and C;H; molecules. In terms of the out-of-plane bending (Qs,
86 c¢cm™!) vibration, the 10a” orbital energy has a positive
curvature, ensuring the planarity of the monobridged structure.
The magnitude of this curvature is substantially larger than the
corresponding value of Al;H; (Table 4). The energy of the 3a”
MO, which was unoccupied in the preceding case (Al;H,), has
negative curvatures for all normal coordinates. This feature is
in sharp contrast to the stabilizing nature for the three bending
vibrations of the la” MO of C;H; (Table 3) and may be
attributed to less efficient hybridization for the second or higher
row atoms.*

The Monobridged Ga;H; Structure: Equilibrium. The
TZ2P SCF optimized geometry is illustrated in Figure 5. The
difference between the two GaH* distances is only 0.012 A
(1.911 — 1.899) at this level of theory, where H* indicates the
bridged hydrogen atom. The almost isosceles M—H*—M

(45) Kutzelnigg, W. Angew. Chem., Int. Ed. Engl. 1984, 23, 272,

Yamaguchi et al.

Figure 5. The optimized geometry for monobridged Ga,H; at the TZ2P
SCF level of theory. Bond lengths are in A and bond angles are in
deg.

structure is consistent with that of the Al;H» species. There is
no apparent 7t bonding between the two Ga atoms.

The energy derivative quantities and the canonical orbital
energies are presented in Table 6. It should be noted that the
four valence orbital energies of the Ga;H; system are slightly
lower than those of the Al;H; system (in Table 4), because the
electronegativity of the Ga atom (1.6) is slightly larger compared
to the Al atom (1.5). Relatively large first-order responses of
the orbital energies are seen for the 22a" MO due to the GaH
stretching (Q;) mode, and for the 21a” MO due to the GaH*
stretching (Q,) and GaGa stretching (Q3;) motions. The 22a’
MO may be related to the GaH bonding and the 21a” MO to
the Ga—H*—Ga bridged bonds. The valence orbital energies
are insensitive to the two bending (Q4 and Qs) motions, as is
usually the case. The energies of the two lone-pair-like orbitals,
the 23a” and 24a” MOs, have gradients with small magnitudes
for all in-plane vibrations.

The second-order responses of the orbital energies for the
first four normal coordinates are qualitatively similar to those
of the Al;H; species. With respect to the GaH* asymmetric
stretching (Qs) mode, the energies of all the valence orbitals
have curvatures with small magnitudes. The curvature of the
23a’ orbital energy with respect to the Qs normal coordinate is
positive with a small magnitude (0.016) unlike the negative
curvature of the 5a° orbital energy for BoH, (see Table 2). Thus,
the bridged H* atom of Ga,H; is more stabilized than that of
the B;H; molecule. In terms of the out-of-plane bending (Qe)
mode, the second-order responses of the orbital energies are
small in magnitude, as was the case for the Al;H; system (see
Table 4). In contrast to the negative curvature of the 6a” orbital
energy of B;H,, the 24a” orbital energy of GaH, has a small
positive curvature. The planar structure is therefore more stable
for the Ga;H, system than the B,H, species.

The Monobridged Ge;H; Structure: Equilibrium (at
Correlated Levels). The predicted geometry at the TZ2P SCF
level of theory is shown in Figure 6. The planar monobridged
structure has one imaginary vibrational frequency. This result
is contrary to that for the isovalent Si;H; monobridged species.
The normal coordinate corresponding to this SCF imaginary
frequency leads to the dibridged (Cy, symmetry) global mini-
mum. At correlated levels of theory, however, this structure is
found to be a genuine minimum.'S The out-of-plane bend has
a real correlated frequency, and a barrier (with a nonplanar
transition state) exists between the planar monobridged and C,
dibridged minima. The difference between the two GeH*
distances is 0.144 A (1.856 — 1.712) at the TZ2P SCF level of
theory. This roughly isosceles feature is consistent with that
of the Si;H; molecule. The difference in the two GeH*
distances is much smaller than those for the B;H, and C;H;
monobridged-like structures. There should be 7 bonding
between the two Ge atoms, since the 9a” orbital is doubly
occupied.
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Table 6. The SCF Energy Derivative Quantities for Planar Monobridged Ga,H; Using the TZ2P Basis Set®
first derivative second derivative
normal coord freq Q1846 Q: 1177 Q3124 Q4397 Qs798 Q1846 Q1177 Q3124 Q4397 Qs798 Q273
mass-weighted normal coord
24a’ (—0.276) —0.028 —0.024 0.034 0.055 0.040 0.025 0.010 0.155 0.077 -0.011 0.003
23a’ (—0.332) —0.025 0.002 0.015 —0.038 -0.069 —0.007 0.089 —0.240 —0.096 0.011 —0.029
22a’ (—0.476) 0.142 0.045 —-0.041 -0.017 0.054 0.076 —0.017 0.100 0.076 0.008 0.080
21a’ (—0.596) 0.021 0.119 0.131 0.060 —-0.022 -0244 -0.168 -0.217 -0.045 -—-0.013 0.039
normal coordinate
24a’ (—0.276) —-0.022 -0.022 —0.005 0.027 0.036 0.019 0.011 -0.002 -—-0.000 -—0.018 0.000
23a’ (—0.332) -0.023 0.001 0.010 -0.027 -0.064 —0.004 0.071 -0.004 -—0.021 0.016 —0.019
22a" (—0.476) 0.127 0.039 —0.000 0.000 0.051 0.058 —0.014 0.006 0.059 0.014 0.059
21a’ (—0.596) 0.026 0.105 0.009  0.022 -0.027 -0.194 -0.142 -0.000 0.003 -0.011 0.036
d"EpfoQ" 6.955 6.748 11.386 4940 —1.287 -—6.281 —0.892 —0.870 2966 —1.924 4.805
"Eo/ 00" —0.609 —0.064 0.007 -0.035 -0076 -—-1.560 —1.100 -—0.033 —0.336 0.164 —0.438
P E e/ 90" 6.346 6.684 11.393 4904 —1.363 -—7.841 —1.992 -0.903 2,630 —1.760 4.367
P Eqd 00" —6.346 —6.684 —11393 —4904 1.363 8.302 2.179 0.905 —-2.609 1.846 —4.357
P E 00" 0.000 0.000 0.000 0.000 0.000 0.461 0.187 0.002 0.021 0.086 0.010
“ See footnotes a—g in Table 2.
Table 7. The SCF Energy Derivative Quantities for Planar Monobridged Ge;H; Using the TZ2P Basis Set.”
first derivative second derivative
normal coord freq Q2211 Q.1603 Q3333 Q4422 Q5890 Q;2211 Q:1603 Q3333 Q4422 Q5890 Q4 128i
mass-weighted normal coord
9a” (—0.269) —0.022 0.006 0.096 0.088 —-0.004 -—-0.028 -0.032 —0.117 -—-0.088 -—-0.007 —0.028
24a’ (—0.360) —0.006 —0.032 —0.004 0.049 0.006 0.047 0.036 0.209 0.387 —-0.069 —0.006
23a’ (—0.429) —-0.014 0.076 0.068 —0.014 -0.046 —0.008 0.081 —0.287 —-0414 0.115 —-0.021
22a’ (—0.587) 0.189 0.011 —0.086 —0.070 0.055 —0.022 -0.016 0.161 0.116 -0.025 0.177
21a’ (—0.766) 0.011 0.123 0.146 0.143 0.004 -0204 —0248 —-0.209 -0.203 0.018 0.026
normal coordinate
9a” (—0.269) —=0.011 0.002 0.009 0.012 0.000 -0.022 -0.029 -0.005 -—-0.005 -0.007 -—0.020
24a’ (—0.360) —0.004 -0.028 -0.014 0.023  0.008 0.034 0.033 -0.004 0013 —-0.062 —0.002
23a" (—0.429) —0.009 0.067 0023 —-0.025 -0.043 —0.000 0.072 -0.007 -0.027 0.097 -0.013
22a’ (—0.587) 0.167 0.011 =0.002 0.003 0.041 -0.030 -0.018 0.039 0.046 —0.014 0.124
21a’ (—0.766) 0.024 0.111 0.006 0.029 0.007 -—0.156 —0.215 0.003 0.001 0.014 0.020
d"Ey/aQ" 7.205 9.122 13.567 13.097 —-0.076 —8.298 —3.903 0.405 0.790 0.396 5.250
P E o/ 30" -0378 -0.118 -0078 —0.055 —0029 —1266 —1.115 —0083 —0.092 0255 -0.075
B Ejed 00" 6.827 9.003 13.490 13.042 —-0.106 —9.564 —5.018 0.322 0.697 0.651 5.175
P Ensd 30° —6.827 —9.003 —13.490 —13.042 0106 10225 5365 —0307 —0.673 —0.544 —5.177
P Ed0Q" 0.000 0.000 0.000 0.000 0.000 0.660 0.347 0.015 0.024 0.107 —0.002

@ See footnotes a—g in Table 2.

Figure 6. The optimized geometry for monobridged Ge;H; at the TZ2P
SCF level of theory. Bond lengths are in A and bond angles are in
deg.

The derivatives of the energetic quantities and the canonical
orbital energies are given in Table 7. The valence orbital
energies for Ge;H; lie near those of the Si;H; system, reflecting
the similar electronegativities* of the two atoms [Ge (1.8) and
Si (1.8)]. From the first-order positive response of the 22a’
orbital energy to the GeH stretching (Q,) mode, the 22a” MO
is attributed to the GeH bonding orbital. The 21a’ orbital energy
shows prominent responses along the GeH* stretching (Q,) and
GeGe stretching (Qs;) motions. The 21a” MO is, therefore,
related to the Ge—Ge and Ge—H*—Ge triangular (bridged)
bonds. The responses of the 9a” orbital energy (in mass-
weighted coordinates) indicate a strong coupling between the
Q3 and Qq vibrations. The first derivatives of the 23a” and 24a’

orbital energies are relatively insensitive to all the in-plane
motions. Thus, they may be related to the lone-pair-like orbitals
located mainly on the Ge atoms.

With respect to the GeH stretching (Q;) and GeH* stretching
(Q>) motions, the 21a’ orbital energy shows negative curvatures,
as was the case with the corresponding MO of the Si;H;
molecule. For the Q; and Q4 vibrations, and 22a" and 24a’
orbital energies have positive curvatures, while the 21a’, 23a’,
and 9a” orbital energies show negative second derivatives. In
terms of the GeH* asymmetric stretching (Qs) mode, the orbital
energy of the 23a” MO shows a positive curvature, unlike the
negative curvature of the corresponding 5a’ orbital energy for
C;H: (see Table 3). This positive curvature lends stability to
the bridged hydrogen atom. The energies of the three highest
occupied orbitals have negative curvatures with small magni-
tudes for the out-of-plane bending (Qg) mode. This feature is
consistent with the Si;H, system, although the Si;H; molecule
has a real out-of-plane bending vibrational frequency at the SCF
level of theory, as well as at correlated levels of theory. The
energy of the 92 MO, which was unoccupied in the preceding
system (GayH,), has negative curvatures for all normal coor-
dinates as was the case for Si;H,. The 7 bonding orbital (9a”),
therefore, does not stabilize the system along the vibrational
motions.

For the first two stretching (Q, and Q;) motions, the second
derivatives of the electronic energy are negative, indicating the
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electronically unstable nature of the stretching processes. On
the contrary, the four (Q3—Qg) vibrational motions have positive
electronic energy contributions to the force constants. These
molecular vibrations, therefore, are seen to be electronically
stable motions.

5. Concluding Remarks

The six planar monobridged dihydrides (M2H5), where M is
a heavy atom of group IIIA or IVA, have been studied using
the energy derivative analysis method. The Si,H, and AlLH,
species have been observed in the laboratory.!® Crucial points
concerning the structural stability are summarized below.

(i) B2H;: The monobridged-like structure has two imaginary
vibrational frequencies. The B—H*—B bridge is far from
isosceles. The BBH* bending (Qs) and out-of-plane bending
(Q¢) force constants are negative. The curvature of the 5a’
orbital energy with respect to the Qs mode and the curvature of
the HOMO 6a’ orbital energy with respect to the Qs mode are
negative with relatively large magnitudes.

(ii) CzH»: The monobridged-like structure has one imaginary
vibrational frequency. The C—H*—C bridge is far from
isosceles. The CCH* bending (Qs) force constant is negative.
The curvature of the 5a” orbital energy with respect to the Qs
mode is negative with a substantial magnitude. With respect
to the out-of-plane bending (Qs) mode the curvature of the 6a’
orbital energy is negative and that of the HOMO 1a” orbital
energy is positive.

(iii) A1;H,: The monobridged structure is a stable minimum.
The Al-H*—Al bridge is almost isosceles. The AIH* asym-
metric stretching (Qs) force constant is positive. The curvature
of the 11a’ orbital energy with respect to the Qs mode is negative
with a small magnitude. The curvature of the HOMO 12a’
orbital energy with respect to the Qg mode is vanishingly small.

(iv) Si;H,: The monobridged structure is a stable minimum.
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The Si—H*—Si bridge is near isosceles. The SiH* asymmetric
stretching (Qs) force constant is positive. The curvature of the
11a’ orbital energy with respect to the Qs mode is positive with
a small magnitude. The curvatures of the 12a” and HOMO 3a”
orbital energies with respect to the Qg mode are negative with
small magnitudes.

(v) Ga;H,: The monobridged structure is a stable minimum.
The Ga—H*—Ga bridge is almost isosceles. The GaH*
asymmetric stretching (Qs) force constant is positive. The
curvature of the 23a’ orbital energy with respect to the Qs mode
is positive with a small magnitude. The curvature of the HOMO
24a’ orbital energy with respect to the Qg mode is vanishingly
small.

(vi) Ge;H,: The monobridged structure is stable at correlated
levels of theory and has a single low-magnitude imaginary
frequency at the SCF level of theory. The Ge—H*—Ge bridge
is near isosceles. The GeH* asymmetric stretching (Qs) force
constant is positive. The curvature of the 23a’ orbital energy
with respect to the Qs mode is positive with a marginal
magnitude. The curvatures of the 24a’” and HOMO 9a” orbital
energies with respect to the Qg mode are negative with small
magnitudes.

The almost and near isosceles structure of monobridged
dihydrides containing group IIIA and IVA atoms stabilizes the
molecular orbital related to the M—H*—M bridge (11a’ for the
third-row M atom and 23a’ for the fourth-row M atom) in terms
of the M—H*—M asymmetric stretching vibration. For the C;H,
system the additional 1a” (;r bonding) orbital stabilizes the
system along the bending vibrations. On the other hand, the
bonding orbitals of Si;H; (3a”) and Ge>H» (9a”) do not have
stabilizing effects along any of the normal coordinates.
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